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Closure of macroscopic laws in disordered spin systems: 
a toy model 
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Abstract We use a linear system of Langevin spins with disordered inreractions as an exactly 
solvable toy model to investigate a procedure, recently proposed by Coolen and Shemnglon, 
for closing the hierarchy of macroscopic order parameter equations in disordered spin systems. 
The closure procedure, based on the removal of microscopic memon effects, is shown to 
reproduce the correct equations for short times and in equilibrium. For intermediate time-scales 
the procedure does not lead to lhe exact equations, yet for homogeneous initial conditions 
succeeds in capturing the main characteristics of the flow in the order parameter plane. The 
procedure fails in term of the long-term temporal dependence of the order parameters. For 
low-energy inhomogeneous inilial conditions and near criticality (where zero modes appear) 
deviations in temporal behaviour are most apparent. For homogeneous initial conditions the 
impact of micmscopic memoq effects on the evolution of macroscopic order parameters in 
disordered spin systems appears to be mainly an overall slowing down. 

The off-equilibrium dynamics of mean-field spin-glass models has been a central subject 
of research in recent times [1-4]. Starting from a stochastic Markovian dynamics for the 
microscopic variables, it is found that the appropriate ‘order parameter functions’-the 
spin-spin correlation function at different times, and the associated response function- 
obey non-Markovian equations. These contain, at all times, ‘memory terms’ which depend 
on the previous history. It has been emphasized recently that these memory terms play 
an important role at low temperatures, being responsible for asymptotic breaking of time 
translation invariance and aging. 

If one wants to retain a description of the dynamics at a Markovian level, it is possible 
to Write down an exact hierarchy of equations which does not close. An infinite number of 
instantaneous ‘order parameters’ is therefore required. Recently Coolen and Shemngton 
f7.81 (cs) proposed a method for obtaining a closed set of autonomous macroscopic 
differential equations, by a systematic elimination of microscopic memory effects. The 
crucial simplifying hypothesis is that at any time-step the system is at equilibrium on 
the surface where some macroscopic variables related to the energy and the magetization 
are constant. They applied this method to the Hopfield [9] model and the Sherrington- 
Kirkpatrick (sK) [ 101 model, which are the archetypical models for attractor neural networks 
and spin-glasses, respectively. The cs procedure, by consbuction, gives the exact equations 
at 1 = 0 and the correct equilibrium fixed points. In addition it is exact for all times in the 
limit where the disorder is removed. For the SK model and the Hopfield model, however, 

03054470/94/216947+08$19.50 @ 1994 IOP Publishing Ltd 6947 



6948 

there are no sufficiently detailed and reliable analytical or numerical results to allow for 
a direct test of the procedure at intermediate times, although recent data on cumulants of 
the local field distribution in the Hopfield model do suggest deviations between theory and 
simulations [ I  11. For the Hopfield model, for instance, non-trivial finite-size effects are 
known to persist even in systems of size N - lo6 [121. Secondly, in both models a full 
analysis following cs requires going through a dynamic version of the replica symmetry 
breaking scheme h la Parisi 1131, for a continuous range of times and parameters, which is, 
in practice, unattainable. 

Nevertheless, it  is worth noticing that even if the CS procedure neglects the possibility 
of aging-the crucial aspect of the spin-glass dynamics-the 'Row diagrams' obtained 
for the order parameters in [7, 81 show qualitative agreement with the results of numerical 
simulations. In order to understand the potential and the restrictions of the closure procedure 
proposed by a, we present in this paper results of studying an exactly solvable toy model, 
for which replica symmetry in the dynamical equations is stable. Since the cs procedure 
is based on the elimination of microscopic memory effects, this also allows us to obtain a 
better understanding of the role of these effects in determining the macroscopic behaviour 
of disordered spin systems. 

As our toy model we choose a linear system of N Langevin spins [ut) with disordered 
interactions ( J i j )  and a Gaussian white noise {vi@)): 

A C C Coolen and S Fram 

in which the symmetric interactions (Ji,) are drawn at random from a Gaussian distribution 
with ( J i j )  = 0 and ( J ; )  = J'N-'. For large N the eigenvalue distribution p ( h )  of the 
interaction matrix is given by Wiper's semi-circular law 1141 

so we have to choose w 25 in order to suppress runaway modes. Both the statics and 
the dynamics of this linear model are solved trivially. In statics, it is found that the replica- 
symmetric solution is always stable and the model does not have a glassy phase. The system 
is always in a 'high-temperature' condition. Here we can expect that the memory effects 
only play a minor role, compared to spin-glass systems which exhibit a transition. The 
dynamics are solved by transformation to the basis where the interaction matrix is diagonal, 
i.e. q ( t )  -+ q ( r )  and qi(t)  -+ ql (r )  (this transformation does not affect the statistical 
properties of the noise). Alternatively, one could write coupled equations for correlation 
and response functions, containing memory terms. Following the former route one obtains 

(3) 

In particular, we can calculate directly the quantitities in terms of which the CS procedure 
will be formulated, the average spin norm Q (l /N) xi  U: and the energy per spin 

ul(t) = ak(o)e-'(w-A) + l'd~ qA(s)el@-A)b-') . 

Q ( t )  = /dAp(h)u~(0)e-zf(@-A' + T di- p(') [I - e-21@-A) I 1 w - ) .  

E z - ( 1 / 2 N )  xi, a i J i j ~ j  + ( p / Z N )  xi U(": 

(4) 

(5) 1 E @ )  = 4 dhp(A)af(O)(p - h)e-*f(@-') t 4T I 
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where u;(O) i s  the contribution per degree of freedom to Q(0) from eigenspace A, i.e. 
Q(0) = ( l /N)  xi uf(0) = JdAp(A)uj(O). We will (improperly) call the quantities Q and 
E 'order parameters' for the system. The macroscopic equilibrium state is found to be 

Q(w) = 2 ~ z [ p  - 4-1 E(w)  = LT 2 '  (6) 
T 

We will consider two types of initial conditions. 
uj(0) = Qo, we can write the solution (4) and (5) in the compact form 

For homogeneous initial conditions, 

in which Ii(2) denotes the modified Bessel function [15]. We can use the properties of 
I I  (2 )  to obtain from (8) directly the short-time and the asymptotic behaviour of the system, 
for comparison with the results of the cs procedure. For short times we find 

E ( t )  = 4pQo + f [pT - Qo(p2 + J')] - t2[T(p2 + J 2 )  - pQo(p2 + 3Jz)] 

+$f3[pT(p2 + 35') - Q0(p4 + 6p2J2 + 2J4)] + U(t4 )  t + 0 (9) 
whereas the asymptotic behaviour turns out to be described by 

The second type of initial conditions we consider are inhomogeneous ones, where the 
system is prepared in one specific eigendirection A of the interaction matrix, so u:(O) = 
QoS(h - A)p-I(A). The solution (4) and (5) can now be written as 

For short times we now find 

E(t) = i ( p  - A)Qo + t[pT - Qo(p - A)'] - t2[T(p2 + J z )  - Qo(p - A)3] 
+ $ i 3 [ p T ( f i 2  + 35') - Qo(p - A)4] + S(t4) t +- 0 (13) 

whereas the asymptotic behaviour is given by 

For p > 2 J  there are no zero modes and the asymptotic relaxation is simply exponential, 
with characteristic time t = [2(p - 2J)l-I. For p = 2J ,  however, zero modes appear, as 
a result of which we find power laws 

Q(t) - Q(w) - t-'" (15) 
The only asymptotic diffence between the two types of initial conditions is that in the case 
of choosing a zero mode as the initial state (p = A = 2J), the equilibrium norm Q(m) 
will depend on Qo. 

We now turn to the cs procedure [7,8] for deriving a closed set of deterministic 
macroscopic differential equations. The total energy per spin is separated into two 

E(t) - E ( m )  - t-3'2. 
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contributions, one of which depends on the realization of the disorder, and one of which 
does not. These two quantities (or equivalently any functions thereof) will evolve in time 
deterministically on finite time-scales and are chosen to represent a macroscopic state. For 
the present model we can choose Q and E .  From the Fokker-Planck equation associated 
with ( I )  follows a Liouville equation for the macroscopic probability distribution P{(Q,  E ) ,  
which describes the deterministic Bow 

A C C Coolen and S Franz 

d 
dt 
-Q = -4[E - ;TI 

with the sub-shell average 

These laws are exact, although not yet closed due to the appearance of the microscopic 
probability distribution p l (u )  in (IS). In the case of the Hopfield 191 and the Sherrington- 
Kirkpatrick [ 101 model, removing the disorder (by putting a = 0 and j = 0 in these models, 
respectively) closes the hierarchy [7,8]. The same happens in the present toy model: for 
J = 0 the sum over sites in (18) simply equals p*Q, the microscopic distribution p r ( a )  
drops out and (16) and (17) close. 

Following CS we now close (16) and (17) for arbitrary J by assuming (i) self- 
averaging of the flow with respect to the microscopic realization of the disorder, and (ii) 
that in evaluating the disorder-averaged sub-shell average ( h 2 ) ~ , % ,  (18) we may assume 
equipartitioning of probability within the (Q,  E )  sub-shells of the ensemble. As a result 
( h 2 ) Q , E i  is replaced by 

The set (16) and (17) is now closed and the sub-shell average (19) can be calculated with 
the replica method. From this stage onwards all calculations can be performed exactly. The 
underlying assumptions are guaranteed to be exact at t = 0 (upon choosing appropriate 
initial conditions) and in equilibrium (as a result of the Boltzmann form of the equilibrium 
distribution). 

In calculating (19) with the replica method there enters an auxiliary spin-glass-type 
order parameter q ( Q ,  E ) ,  with the physical meaning 

J J d u d d h  Ci~j0;'S[Q - Q(u)]S[E - E(o)]S[Q - Q ( d ) ] S [ E  - E(o')] 
E ( J J d o b ' G t Q  - Q(dl61E - E(o)lStQ - Q ( d l S [ E  - E(41 

(20) 

Upon making the replica-symmetry (RS) ansatz one finds three different regions in the 
( Q ,  E )  plane, characterized by different associated values of q and of the relevant sub-shell 
average ( h 2 ) n , ~ ,  the boundaries of which are the lines E = E A  and E = E B :  

E A  = I ,Q(p - J )  E g  AQ(p + J ) .  (21) 

By calculating the eigenvalue h * ~ ,  which determines the stability of the RS saddle point 
in the so-called replicon direction [16], we find that RS is truly stable in the q = 0 region 
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Figure 1. Flow in the (Q, E )  plane according to the cs equafions, for p = 8 and T = 3. 
Left-hand figure: .I/@ = 1 (no zero moder), right-hand figure: 5 / p  = (zero modes). Outer 
two broken lines: boundaries of the physicd region, E = 4 Q@ f 25) (note, for J / p  = 4 one 
of these coincides with the h e  E = 0). Inner two broken lines: boundaries EA,B of the q = 0 
region. Thin horizontal line segment in the right-hand Rgure represents the degenerated stable 
line E =  B T .  

(AAT > 0), and marginally stable in the two q > 0 regions (AAT = 0): 

Region 9  AT dE/dt 
E < E A  2 0  0 -2y(E - $27 + (/L - 2 5 ) ( ~ Q  - 2E) 

E > E* > o  0 --2p(E - i T )  + (/L + 2 5 ) ( ~ Q  - 2 E ) .  

(22) E * < E < E g  0 > 0 yT - QJ2  - 4 E z / Q  

In the limit of zero disorder we indeed recover the correct (trivial) evolution for the 
remaining order parameter Q. We will now assess to what degree the CS flow equations 
(16) and (22) reproduce or approach the exact results in the presence of disorder. 

According to (16) and (22) the flow in the two q > 0 regions is directed into the middle 
region 9 = 0, where the fixed-point of the flow is indeed given by the correct expression 
(6). At criticality (y = 25). however, the 9 = 0 fixed-point is precisely on the regional 
boundary E = EA and a degenerated stable line E = $T develops in the region E c EA. 
Solving numerically the flow equations (16) and (22) results in figure 1 (in this example 
y = 8 and T = 3), where we show the flow iterated for 0 Q f Q 10 from initial states 
which are drawn either homogeneously (on the line E = $yQo)  or inhomogeneously from 
the extreme modes A = 1.25 (on the lines E = $Q& & Z J ) ,  which are the boundaries of 
the physical region). 

The corresponding Row according to the exact equations (8) and (12) is shown in 
figure 2. Away from the critical situation y = 2 J  there is a qualitative agreement between 
the two flows, especially for homogeneous initial conditions. For p = 25 there are clear 
deviations in the region E < EA (where one finds the zero modes). In this picture we 
have added flow lines starting from initial states with E = ;Qo(y - 2 J )  + E (6 < I), to 
emphasize the difference with the zero modes E = $Qo(y  - 2J). The degenerated line 
E = $T of the CS equations is in reality not stable. 

If we inspect the temporal behaviour away from the critical situation y = 25, we find 
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E 2  
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0 
0 .5 1 1.5 2 

Q 
Figure 2. Flow in the (Q. E )  plane according to the exan solution, for p = 8 and T = 3. 
Left-hand figure: J / p  = (no zero modes). right-hand figure: J / p  = 1 (zem modes). Outer 
broken lines: boundaries of the physical region, E = i Q ( p  125) (note, for J / f i  = f one of 
these coincides with the line E = 0). inner broken lines: boundaries E ~ B  of the q = 0 region. 

2 

0 .2 .4 .6 .8 1 0 .2 .4 .6 .8 1 
t t 

Figure 3. Comparison of order panmeter evolution starting from homogeneous initial states, 
for f i  = 8. T = 3 and J / p  = f (no zero modes). Full curves, exact equations; broken curves, 
cs closure. 

a remarkable agreement for the case of homogeneous initial conditions (see figure 3). In 
the case of inhomogeneous initial conditions (see figure 4) there is a difference between 
starting from high-energy initial states h = 25, where there is again agreement between 
exact and cs results, and starting from low-energy initial states A = -25, where significant 
deviations occur. Expansion of the flow equations (16) and (22) around the equilibrium 
state gives the leading asymptotic temporal behaviour, which can be compared to the exact 
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Figure 4. Comparison of order parameter evolution starting from inhomogeneous initial states, 
for w = 8, T = 3 and J / w  = 2 (no zero modes), Full curves. exact equations; broken c w e s ,  
(s closure. 

results (with the dimensionless quantity x 

p > 25: 
U/@): 

~ ( t )  - ~ ( m )  -e+' 

exact: 

cs: 

Q(t )  - Q(m) - 
(zpLr)-' = 1 - x 

(23) (ZpLr)-I = $(I - x )  t $- 
p = 25: E ( t )  - E ( m )  - f-u-l 

exact: 
a: c f = l .  

Q@) - Q(m) - t-' 
u = l  

2 

The agreement obtained for homogeneous initial conditions, in spite of the difference 
in characteristic relaxation times (23), can be explained by studying the behaviour of 
log[Q - Q(m)] and log[E - E ( m ) ]  as a function of time for the exact soluticn (8). It turns 
out that the regime of exponential relaxation only sets in extremely close to equilibrium (for 
log[Q - Q(m)] and log[E - E ( m ) ]  of the order of For short times one can expand 
the cs equations in powers off and compare with the exact expansions (9) and (13), with 
the following results: 

(24) 
= 4pQo Ecs(0 = &xact(t) + W t 3 )  

= $ ( E L  * zJ )Qox  Ecs(t) ~ e x a c t ( t )  + W2)  
which explains the difference in agreement between the two types of initial conditions, i.e. 
between figures 3 and 4. 

The aim of our study was to perform a test of the closure procedure proposed in [7, 81, 
which is based on the removal of any memory effects in the evolution of macroscopic 
quantities. For such a test we have chosen a model which is exactly solvable, and does not 
involve the full hierarchy of replica-symmetry breaking in the dynamical calculations of cs. 
Our study shows that the cs procedure does not lead in any non-hivial case to the exact 
equations, yet in some cases succeeds in capturing the main characteristics of the flow in the 
order parameter plane. The procedure fails in terms of the long-term temporal dependence 
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of the order parameters. However, in the absence of zero modes, and for homogeneous 
initial conditions the hue asymptotic regime tums out to have only restricted relevance, as 
it sets in exbemely late. This implies that for hcmogeneous initial conditions the effect 
of microscopic memory effects on the evolution of macroscopic order parameters results 
mainly in an overall slowing down. 
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