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Abstract, We use a linear gystem of Langevin spins with disordered interactions as an exactly
solvable toy model to investigate a procedure, recently proposed by Coolen and Shemington,
for closing the hierarchy of macroscopic order parameter equations in disordered spin systems,
The closure proceduse, based on the removal of microscopic memory effects, is shown to
reproduce the correct equations for short tumes and in equilibrium. For intermediate time-scales
the procedure does not lead to the exact equations, yet for homogeneous initial conditions
succeeds in capturing the main characteristics of the flow in the order parameter plane. The
pracedure fails in terms of the long-term temporal dependence of the order parameters. For
low-energy inhomogeneous initial conditions and near criticality {where zero modes appear)
deviations in temporal behaviour are most apparent. For homogeneous initial conditions the
impact of microscopic memory effects on the evolution of macroscopic order parameters in
disordered spin systems appears to be mainly an overall slowing down.

The off-equilibrium dynamics of mean-field spin—glass models has been a central subject
of research in recent times [1-4]. Starting from a stochastic Markovian dynamics for the
microscopic variables, it is found that the appropriate ‘order parameter functions’-—the
spin-spin correlation function at different times, and the associated response function--
obey non-Markovian equations. These contain, at all times, ‘memory terms’ which depend
on the previous history, It has been emphasized recently that these memory terms play
an important role at low temperatures, being responsible for asymptotic breaking of time
translation invariance and aging.

If one wants to retain a description of the dynamics at a Markovian level, it is possible
to write down an exact hierarchy of equations which does not close. An infinite number of
instantaneous ‘order parameters’ is therefore required. Recently Coolen and Sherrington
{7,8] (cs) proposed a method for obtaining a closed set of autonomous macroscopic
differential equations, by a systematic elimination of microscopic memory effects. The
crucial simplifying hypothesis is that at any time-step the system is at equilibrium on
the surface where some macroscopic variables related to the energy and the magetization
are constant. They applied this method to the Hopfield [9] model and the Sherrington—
Kirkpatrick (SK) [10] model, which are the archetypical models for attractor neural networks
and spin—glasses, respectively. The CS procedure, by construction, gives the exact equations
at t = 0 and the correct equilibrium fixed points. In addition it is exact for all times in the
limit where the disorder is removed. For the sK model and the Hopfield model, however,
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there are no sufficiently detailed and reliable analytical or numerical results to allow for
a direct test of the procedure at intermediate times, although recent data on cumulants of
the locat field distribution in the Hopfield model do suggest deviations between theory and
simulations [11]. For the Hopfield model, for instance, non-trivial finite-size effects are
known to persist even in systems of size ¥ ~ 10 [12]. Secondly, in both models a full
analysis following CS requires going through a dynamic version of the replica symmetry
breaking scheme & la Parisi [13), for a continuous range of times and parameters, which is,
in practice, unattainable.

Nevertheless, it is worth noticing that even if the CS procedure neglects the possibility
of aging—the crucial aspect of the spin-glass dynamics—the ‘flow diagrams’ obtained
for the order parameters in [7, 8] show qualitative agreement with the results of numerical
simulations. In order to understand the potential and the restrictions of the closure procedure
proposed by CS, we present in this paper results of studying an exactly solvable toy model,
for which replica symmetry in the dynamical equations is stable. Since the €8 procedure
is based on the elimination of microscopic memory effects, this also atiows us to obtain a
better understanding of the role of these effects in determining the macroscopic behaviour
of disordered spin systems,

As our toy model we choose a linear system of N Langevin spins {¢;} with disordered
interactions {J;;} and a Gaussian white noise {;(t)}:

d Y ,
S0 =2 hioy —poikm w0 ()) = 27880 1) (1)
j=t

in which the symmetric interactions {J;;} are drawn at random from a Gaussian distribution
with (J;;} = 0 and (15.} = JZN-!. For large N the eigenvalue distribution p(A) of the
interaction matrix is given by Wigner’s semi-circular law [14]

442 )2
W=

so we have to choose u > 2/ in order 1o suppress runaway modes. Both the statics and
the dynamics of this linear model are solved trivially. In statics, it is found that the replica-
symmetric solution is always stable and the model does not have a glassy phase. The system
is always in a ‘high-temperature’ condition. Here we can expect that the memory effects
only play a minor role, compared to spin—glass systems which exhibit a transition. The
dynamics are solved by transformation to the basis where the interaction matrix is diagenal,
ie o;(t) = o (f) and m; (2} = 1, () (this transformation does not affect the statistical
properties of the noise). Alternatively, one could write coupled equations for correlation
and response functions, containing memory terms. Following the former route one obtains

827+ A6 24 —A] (2)

{
0. (1) = o3 (Q)e~" M 4+ f ds m (s)ele=P=0 | 3
0
In particular, we can calculate directly the quantitities in terms of which the CS procedure
will be formulated, the average spin norm Q = (/MY ¢} and the energy per spin
E=—(1/2N) Zq oidyyo; + (1/2N) Z ai

Q@) = f A p(MoR(O)e ¥R o T f a2 ) [1 - ezuen] @

Emy=1 f dA p(MoF0)(u — My ¥EN L 1T [1 - f di p(k)e'z'“"“] )
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where o2(0) is the contribution per degree of freedom to Q(0) from eigenspace A, ie.
Q(0) = (1/N) Y, 020} = [da p(X)of(0). We will (improperly) call the quantities Q and
E ‘order parameters’ for the system. The macroscopic equilibrium state is found to be

0) = 5 lu V=] Eo) =1T. ©

We will consider two types of initial conditions. For homogeneous initial conditions,
o'f((}) = Op, we can write the solution (4) and (5) in the compact form

0() = Oy —4 fﬂ ds[E(s) = L7] )

d e (4]t
E@)=4T -4 [%Q05+T:| -—2—01”—-2

in which /1(z) denotes the modified Bessel function [15]. We can use the properties of
I1(z) to obtain from (8) directly the short-time and the asymptotic behaviour of the system,
for comparison with the results of the CS procedure. For short times we find

E(0) = 1pQo+t[uT — Qo(i? + J%)] = [T (1 + 7%) — nQo(n”® + 37%)]
+23[uT (u® +37%) — Qo(p* + 61277 +29] + O t—=0 (9

whereas the asymptotic behaviour turns out to be described by

(8)

| e—Zt(,u—ZJ) 1

The second type of initial conditions we consider are inhomogeneous ones, where the
system is prepared in one specific eigendirection A of the interaction matrix, so o(0) =
Qo8 (% — A)p~"(A). The solution (4) and (5) can now be written as

o) = Q0—4fods[E(s)—%T] ‘an

! (4.]:)] a2

E(f) = 3 Qo(u — A)e™>W=A 4 17 [1 -,

For short times we now find
E() = §(1 — M) Qo+ 1[uT = Qo(i — A)] = [T (* + J7) = Qo — A)*]
+203[uT (u +37%) — Qolu — A)Y] + O¢h t—>0 (13)
whereas the asymptotic behaviour is given by
E(t) = 3T 4+ L{p — A)Qee™ 2N T‘“‘——m‘i{)—[l + O(l)] t— 00 (14)
27 T2 ¢ 4 T @112 t ’
For g > 2J there are no zero modes and the asymptotic relaxation is simply exponential,
with characteristic time © = [2(x — 2J)]™!. For u = 2J, however, zero modes appear, as
a result of which we find power laws
Q) — Q(oo) ~ 112 E(t) — E(co) ~ 1732, (135)

The only asymptotic diffence between the two types of initial conditions is that in the case
of choosing a zero mode as the initial state (& = A = 2J), the equilibrium norm Q(c0)
will depend on Gp.

We now turn to the CS procedure [7,8] for deriving a closed set of deterministic
macroscopic differential equations. The total energy per spin is separated into two
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contributions, one of which depends on the realization of the disorder, and one of which
does not. These two quantities (or equivalently any functions thereof) will evolve in time
deterministically on finite time-scales and are chosen to represent a macroscopic state. For
the present model we can choose & and E. From the Fokker-Planck equation associated
with (1) follows a Liouville equation for the macroscopic probability distribution 7,(Q, E),
which describes the deterministic flow

d
52= ~4[E - 1T] (16)
d
d_rE = uT — (B g 5 (a7

with the sub-shell average

fdo p()8(Q — Q(a)]SLE ~ E(@) (1/N) Y, [Z, Jijoj — v"“’f]z
fdo pi(0)8[Q — Q(e)SIE — E(o)] '

These laws are exact, although not yet closed due to the appearance of the microscopic
probability distribution p,{(c} in (18). In the case of the Hopfield [9] and the Sherrington—
Kirkpatrick {10} model, removing the disorder (by putting & = 0 and JJ == 0 in these models,
respectively) closes the hierarchy [7,8]. The same happens in the present toy model: for
J = 0 the sum over sites in (18) simply equals #>Q, the microscopic distribution p;(c)
drops out and (16) and (17} close.

Following ¢s we now close (16) and (17) for arbitrary J by assuming (i) self-
averaging of the flow with respect to the microscopic realization of the disorder, and (ii)
that in evaluating the disorder-averaged sub-shell average (#%)p g, (18) we may assume
equipartitioning of probability within the (@, E) sub-shells of the ensemble. As a result
{h?)p,£; 1s replaced by

2 fdo 310 — Q(e)SLE — E@]I(I/M Y, [Z} Sy = "w‘k]z
(W)g.z = @
Jdo 810 — Q()]S[E — E(o)] i)

The set (16) and (17) is now closed and the sub-shell average (19) can be calculated with
the replica method. From this stage onwards all calculations can be performed exactly. The
underlying assumptions are guaranteed to be exact at ¢ = © (upon choosing appropriate
initial conditions) and in equilibrium (as a result of the Boltzmann form of the equilibrium
distribution).

In calculating (19) with the replica method there enters an auxiliary spin—glass-type
order parameter g(Q, £), with the physical meaning

_ (ffdddd’ L3 000/ 80 — Q(O)B[E — E(o)18[Q — Q(cNS[E - E(“')])
- [fdo de’ §1Q — Q(e)SIE — E(@)dlQ — Q(o)BIE — E(o")) Uyl

Wy g.E: = (18)

(20)

Upon making the replica-symmetry (RS) ansatz one finds three different regions in the
(Q, E) plane, characterized by different associated values of ¢ and of the relevant sub-shell
average {hz}Q,E, the boundaries of which are the lines £ = E, and £ = Eg:

Ex=10w-10)  Es=i0(+/). (21)

By calculating the eigenvalue Aar, which determines the stability of the RS saddle point
in the so-called replicon direction [16], we find that RS is truly stable in the ¢ = 0 region
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Fipure L. Flow in the (@, E) plane according to the cs equations, for p = 8 and T = 3.
Left-hand figure: J/pe = % (no zero modes), right-hand figure: J/u = }1- {zero modes}. Quter
two broken lines: boundaries of the physical region, E = § Q(u % 2.J) (note, for J/u = 5 one
of these coincides with the line £ = 0). Inner two broken lines: boundaries Eap of the ¢ =0
region. Tl}in horizontal line segment in the right-hand figure represents the degenerated stable
line E = 3T.

(Aar > 0), and marginally stable in the two ¢ = 0 regions (Aar = 0):

Region g AT dE/dt

E < E,s >0 0 —2u(E — 3T) + (. — 2J)(uQ — 2E) 22)
En<E<Eg 0 >0 uT - QJT—4E%/Q

E> Ep >0 O —2u(E — §T) + (n + 20)(uQ — 2E).

In the limit of zero disorder we indeed recover the correct (trivial) evolution for the
remaining order parameter @, We will now assess to what degree the ¢S flow equations
(16) and (22) reproduce or approach the exact results in the presence of disorder.

According to (16) and (22) the flow in the two g > 0 regions is directed into the middle
region g = 0, where the fixed-point of the flow is indeed given by the correct expression
(6). At criticality {u = 2J). however, the g = O fixed-point is precisely on the regional
boundary E = E, and a degenerated stable line £ = %T develops in the region E < E4.
Solving numerically the flow equations (16) and (22) results in figure 1 (in this example
i = 8 and T = 3), where we show the flow iterated for 0 < ¢t < 10 from initial states
which are drawn either homogeneously (on the line £ = %,qu) or inhomogeneously from
the extreme modes A = £2J (on the lines £ = %Qo(# =+ 2J), which are the boundaries of
the physical region).

The corresponding flow according to the exact equations (8) and (12) is shown in
figure 2. Away from the critical sitvation t = 2J there is a qualitative agreement between
the two flows, especially for homogeneous initial conditions, For u = 2/ there are clear
deviations in the region £ < E, (where one finds the zero modes). In this picture we
have added flow lines starting from initial states with £ = %Qo(y, —2N+e(e k), to
emphasize the difference with the zero modes £ = %Qo(u. — 2J). The degenerated line

= %T of the C$ equations is in reality not stable.

If we inspect the temporal behaviour away from the critical situation & = 2/, we find
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Figure 2. Flow in the (2, E) plane according to the exact solution, for pt = 8 and T == 3,
Left-hand figure: J/u = % {nc zero modes), right-hand figure: J/un = % (zero modes). Quter
broken lines: boundaries of the physical region, £ = %Q(_u +2J) (note, for J/pu = % one of
these coincides with the line £ = 0). Inner broken lines; boundaries Ea g of the ¢ = 0 region,
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Figure 3. Comparison of order parameter evolution starting from homogeneous initial states,
foru =8 T=3and Jfp = % {no zero modes). Full curves, exact equations; broken curves,
Cs closure,

a remarkable agreement for the case of homogeneous initial conditions (see figure 3). In
the case of inhomogeneous initial conditions (see figure 4) there is a difference between
starting from high-energy initial states A = 2J, whete there is again agreement between
exact and CS resulis, and starting from low-energy initial states A = —2J, where significant
deviations occur. Expansion of the flow equations (16) and (22} around the equilibrium
state gives the leading asymptotic temporal behaviour, which can be compared to the exact
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Figure 4. Comparison of order parameter evolution starting from inhomogenegus initial states,
forp=8T=3and J/u= % (no zero modes), Full curves, exact equations; broken curves,
Cs closure,

results (with the dimensionless quantity x = 2J/u).

L= 27 E{?) — E{co) ~ e/t 0(t) — Qo) ~e™/®

exact: Qury'=1-x

Cs: Cur)! = %—(1 —-x)+ -é-\/l —x2 23)
p=21:  E@-E@)~t™" Q@)= Qo) ~ 1™

exact: o= 11;

CS: o=1.

The agreement obtained for homogeneous initial conditions, in spite of the difference
in characteristic relaxation times (23), can be explained by studying the behaviour of
log[ @ — O(oo)] and log[E — E(co0)}] as a function of time for the exact soluticn (8). It turns
out that the regime of exponential relaxation only sets in extremely close to equilibrium (for
log[ Q@ — @(c<)] and log[E — E(oc)] of the order of 10715). For short times one can expand
the CS equations in powers of ¢ and compare with the exact expansions (9) and (13), with
the following results:

E(0) = 1u00 Ecs(t) = Eexaar(t) + O(%)
E0) = ‘é‘(ﬂ' £27)Qox Ecs(t) = Eexan(2) + O(tz)

which explains the difference in agreement between the two types of initial conditions, i.e.
between figures 3 and 4.

The aim of our study was to perform a test of the closure procedure proposed in [7, 8],
which is based on the removal of any memory effects in the evolution of macroscopic
quantities. For such a test we have chosen a model which is exactly solvable, and does not
involve the full hierarchy of replica-symmetry breaking in the dynamical calculations of cs.
Our study shows that the S procedure does not lead in any non-trivial case to the exact
equations, yet in some cases succeeds in capturing the main characteristics of the flow in the
order parameter plane. The procedure fails in terms of the long-term temporal dependence

24)
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of the order parameters. However, in the abgsence of zero modes, and for homogeneous
initial conditions the true asymptotic regime turns out to have only restricted relevance, as
it sets in extremely late. This implies that for homogeneous initial conditions the effect
of microscopic memory effects on the evolution of macroscopic order parameters results
mainly in an overall slowing down.
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